Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Curr Drug Deliv ; 2023 May 12.
Article in English | MEDLINE | ID: covidwho-2319245

ABSTRACT

The lymphatic system (LS) plays a crucial role in fluid balance, transportation of macromolecules, and immune response. Moreover, LS is a channel for microbial invasion and cancer metastasis. Particularly, solid tumors, including lung, breast, melanoma, and prostate cancers, are metastasized across highways of LS. Subsequently, the fabrication of chimeric lymphatic drug delivery systems (LDDS) is a promising strategy to fight cancer metastasis and control microbial pandemics. In this regard, LDDS, in terms of PEG-nanoscaled lipid carriers, elicited a revolution during the COVID-19 pandemic as cargoes for mRNA vaccines. The drug delivered by the lymphatic pathway escapes first-pass metabolism and enhances the drug's bioavailability. Ample approaches, including synthesis of prodrugs, trigging of chylomicron biosynthesis, and fabrication of nanocarriers, facilitate lymphatic drug delivery. Specifically, nanoscales lipid cargoes have the propensity to lymphatic trafficking. Interestingly, TPGS-engineered nanoscale lipid cargoes enhance lymphatic trafficking, increase tissue permeation, and, specifically, uptake. Moreover, they overcome biological barriers, control biodistribution, and enhance organelles localization. Most anticancer agents are non-specific, have low bioavailability, and induced drug resistance. Therefore, TPGS-engineered nanoscale lipid chimeras improve the therapeutic impact of anticancer agents. This review highlights lymphatic cancer metastasis, nanoscales lipid cargoes as LDDS, and their influence on lymphatic trafficking, besides the methods of LDD studies.

2.
Int J Environ Res Public Health ; 19(7)2022 03 25.
Article in English | MEDLINE | ID: covidwho-1847295

ABSTRACT

BACKGROUND: Distance learning has come to the forefront of educational delivery throughout the world due to the COVID-19 pandemic. Presently, there is a paucity of studies that have utilized interactive e-lectures as a model for remote flipped learning. OBJECTIVES: To compare educational outcomes for the remote interactive flipped e-learning (iFEEL) activity versus paper-based in-class group learning (PICkLE). METHODS: During the spring 2021 semester, tutorials in pharmaceutical quality control and good manufacturing practice were remotely delivered to students by two different approaches: PICkLE and iFEEL. In the latter activity, interactive e-lectures were software-designed and included several audiovisual enhanced illustrations to encourage students to interact with the lecture material prior to attending the virtual class. The class time was reserved for in-class quizzes and discussion. Mean exam scores were compared and voluntary questionnaires were distributed among the participating students as well as healthcare faculty members in 29 Saudi universities. Data from the remotely-delivered course was compared with data from previous course offerings (2018-2020) that used the live PICkLE method. RESULTS: The mean score of post-lecture tests significantly (p < 0.05) increased compared to pre-lecture tests in remote PICkLE and iFEEL, respectively. iFEEL activity showed higher mean post-tests score (95.2%) compared to live PICkLE (90.2%, p = 0.08) and remote PICkLE (93.5%, p = 0.658). Mean comprehensive exam scores increased from 83.8% for remote PICkLE to 89.2% for iFEEL (p = 0.449). On average, 92% of students and 85% of faculty members reported positive feedback on the five quality attributes of the e-lecture. Over 75% of students preferred the iFEEL over PICkLE activity for future course offerings and 84% of faculty members recommend the integration of interactive e-lectures in their future courses. CONCLUSION: iFEEL represents a novel model of remote flipped learning and shows promising potential to be incorporated into live blended-learning classroom activities.


Subject(s)
COVID-19 , Computer-Assisted Instruction , Students, Pharmacy , COVID-19/epidemiology , Curriculum , Educational Measurement/methods , Humans , Pandemics
SELECTION OF CITATIONS
SEARCH DETAIL